Войдите или Зарегистрируйтесь на нашем сайте чтобы получить оптовые цены

Ремонт монитора LG 885LE LCD

Ремонт мониторов LCD затруднен высокой степенью интеграции применяемых компонентов. Практически вся электронная схема монитора представляет собой несколько микросхем, имеющих значительное количество выводов, и размещенных на печатной плате методом поверхностного монтажа. Значительная часть микросхем, применяемых в производстве LCD-мониторов, является уникальными микросхемами, разрабатываемыми исключительно для узкой области применения. Кроме того, сама LCD-панель, являясь сложнейшим электронным компонентом, выполнена в виде единого неразборного блока, который на самом деле состоит из множества составляющих. Все это, естественно, затрудняет ремонт на уровне отдельных элементов, но ведь и блочный ремонт всегда имел место, и этот метод ремонта всегда отличался высокой оперативностью. Но даже ремонт на уровне блоков требует от специалистов хорошего знания принципов работы устройства, знания его составляющих компонентов и их функций. Только при соблюдении этих условий можно говорить об эффективном, быстром и грамотном ремонте на уровне блоков. Именно в таком разрезе и рассматривается в этой статье LCD-монитор производства одного из лидеров отрасли – фирмы LG.

 

Монитор LG 885LE (LB885CU) является 18-дюймовым монитором TFT (размер активной области вывода 413х333 мм), поддерживающим стандарт SXGA. Базовая разрешающая способность этого монитора составляет 1280х1024 точек. Количество отображаемых цветовых оттенков – 16.581.375. Для обеспечения такой цветовой палитры используется 8-битное кодирование цвета. В составе LCD-панели имеется четыре лампы задней подсветки типа CCFL (флуоресцентная лампа с холодным катодом). Монитор оснащен двумя входными разъемами: аналоговым (D-SUB) и цифровым (DVI), что позволяет подключать данный монитор практически к любой видеокарточке. Диапазон строчной частоты этой модели монитора составляет 31 – 80 кГц, а диапазон кадровой частоты от 56 до 120 кГц. Кроме того, монитор оснащен хабом интерфейса USB.

 

 

Входные цепи

Как уже говорилось в описаниях характеристик монитора, данная модель оснащена двумя типами интерфейса.

1. Стандартным аналоговым интерфейсом типа DSUB-15, имеющим 15-контактов. Через разъем этого интерфейса на вход монитора подаются три аналоговых сигнала цвета (R,G,B) и два TTL-сигнала синхронизации: строчная (H) и кадровая (V). Этот интерфейс ничем не отличается от интерфейса мониторов с электронно-лучевыми трубками.

2. Универсальным интерфейсом DVI, через который информация может передаваться как в виде аналоговых сигналов R,G,B, так и в виде цифровых данных. Цифровые данные передаются по линиям дифференциальных пар TXn+ и TXn-.

И в том и в другом интерфейсе имеются сигналы для передачи данных между монитором и компьютером с использованием стандарта DDC. По линиям этого интерфейса передаются данные о параметрах монитора (для обеспечения технологии Plug&Play) и данные для управления настройками монитора. Передача данных по линиям DDC поддерживается центральным процессором монитора (MICOM), а для хранения данных о характеристиках монитора и о текущих его настройках имеются две микросхемы энергонезависимой памяти – NVRAM (24LC21).

К входным цепям также можно отнести коммутатор видеосигналов, который представляет собой интегральную микросхему BA7657F.На вход этой микросхемы подается две группы аналоговых сигналов цвета: с разъема D-SUB и с разъема DVI. На выход же коммутатора передается только одна из этих групп сигналов. Сигналы какого из интерфейсов должны передаваться на выход коммутатора, определяется сигналом CNTL-IN от микропроцессора.

Коммутация сигналов строчной (H) и кадровой (V) синхронизации осуществляется схемой селектора сигналов синхронизации, выполненной на дискретных элементах. Схема селектора также управляется сигналом CNTL-IN. Селектором сигналов синхронизации генерируется еще и сигнал H-PLL, необходимый для аналого-цифрового преобразователя. С помощью этого сигнала обеспечивается фазовая и частотная подстройка АЦП при преобразовании сигналов цвета. Отсутствие такой синхронизации может привести к сильному ухудшению качества изображения, размытой и дрожащей картинке.

Следует отметить то, что на вход селектора сигналов подается еще и сигнал, обозначаемый HSYNC4. Этот сигнал формируется ресивером TMDS. HSYNC4 является сигналом строчной развертки, и используется в том случае, когда монитор подключен с помощью разъема DVI и осуществляется передача цифровых данных по линиям дифференциальных пар. HSYNC4 выделяется ресивером TMDS из пары дифференциальных сигналов TXC+ и TXC-.

 

Аналого-цифровой преобразователь

Аналого-цифровым преобразователем, во-первых, осуществляется предварительное усиление сигналов цвета перед их конвертацией в цифровой вид, и, во-вторых, непосредственное преобразование аналоговых сигналов в цифровой вид. АЦП оснащен системой ФАПЧ (фазовой автоматической подстройки частоты), позволяющей добиться наилучшего качества преобразования. Преобразование аналогового сигнала в цифровой код осуществляется с частотой генерации точек, так называемой частотой pixel clock, находящейся в диапазоне 25-135 МГц.

АЦП представляет собой интегральную микросхему AD9884. На выходе АЦП каждому цвету соответствует 16-разрядное число, т.е. на выходе АЦП формируется 48-битный поток данных, который обрабатывается видеопроцессором. Но не стоит полагать, что цвет каждой точки преобразуется в 16-разрядное число. Микросхемой AD9884 значение цвета каждой точки преобразуется в 8-разрядный цифровой код, но для увеличения производительности системы имеется возможность на входе АЦП формировать значения сразу для двух точек – четной и нечетной. В результате этого и получается 16-рзрядная шина данных.

 

Приемник TMDS

Интерфейс DVI базируется на использовании стандарта TMDS для передачи данных в цифровом виде. Цифровые данные передаются в последовательном виде по низковольтной дифференциальной шине, состоящей из нескольких дифференциальных пар. В данном мониторе каждому сигналу цвета соответствует одна дифференциальная пара. Еще одна – четвертая дифференциальная пара (TXC+ и TXC-) используется для передачи сигналов синхронизации. Данные, переданные на монитор в последовательном виде должны быть преобразованы в параллельный код. Такое преобразование осуществляется микросхемой приемника (ресивера) TMDS, на выходе которого каждому цвету соответствует 16-разрядный параллельный код (8 бит для четных точек и 8 бит – ля нечетных). Итоговый 48-разрядный поток данных обрабатывается видеопроцессором.

 

Видеопроцессор

Видеопроцессор, являясь микросхемой высокой степени интеграции, обеспечивает обработку данных, полученных либо от АЦП, либо от TMDS-ресивера. Видеопроцессор выполняет функцию масштабирования изображения. Это означает следующее. Если компьютером, или другим источником сигналов, формируется изображение с разрешением, отличающимся от 1280х1024 (например, пользователь установил режим 1024х768), то изображение необходимо каким-либо образом преобразовать к формату 1280х1024. Только в этом случае можно надеяться на более качественное изображение. Преобразование любого разрешения к виду 1280х1024 осуществляется методом интерполяции, проводимой видеопроцессором в соответствии с управляющей программой.

Для осуществления интерполяции требуется наличие оперативной памяти, являющейся буфером кадра. Именно для организации такого буфера в составе монитора имеются микросхемы синхронной памяти динамического типа (SDRAM). Доступ к этой памяти осуществляет видеопроцессор с использованием обычных сигналов обслуживания динамической синхронной памяти.

Программирование видеопроцессора и его настройка на определенный режим работы осуществляется центральным процессором с использованием внутренней системной шины. Эта шина является 8-разрядной мультиплексированной шиной (MAD0-MAD7).

На выходе видеопроцессора формируются сигналы для управления передатчиками шины LVDS. Для увеличения пропускной способности используется два передатчика LVDS – для четных и для нечетных точек экрана. Цвет каждой точки на выходе видеопроцессора кодируется 8-разрядным параллельным кодом.

 

Передатчики LVDS

Передача данных непосредственно на LCD-панель в данной модели монитора осуществляется по шине LVDS. Данные по этой шине передаются в последовательном виде дифференциальными сигналами. Использование LVDS обеспечивает лучшую помехозащищенность передаваемых данных, а также уменьшает количество проводников между основной платой монитора и LCD-панелью, что, несомненно, повышает надежность системы и упрощает процесс разработки и производства монитора.

Преобразование параллельных данных в последовательный вид осуществляется микросхемами передатчиков LVDS, типа LVDS83.

 

Микропроцессор

Микропроцессором монитора, как и положено, обеспечивается общее управление компонентами системы. Микропроцессором определяются режимы работы, считывается состояние кнопок панели управления, формируются сигналы управления LCD-панелью, осуществляется настройка микросхем АЦП и видеопроцессора и т.д. В качестве микропроцессора используется микросхема PIC-контроллера широкого применения – это M68HC05BD48. Функции этой микросхемы определяются «прошивкой» внутреннего ПЗУ, т.е. управляющей программой.

 

USB-HUB

Монитор оснащен хабом USB, обслуживание которого осуществляется специализированной микросхемой – TUSB2040A. Эта микросхема фактически является микроконтроллером с собственной управляющей программой.

 

Инвертор

Инвертором обеспечивается формирование питающего напряжения для ламп задней подсветки LCD-панели. Инвертор из постоянного напряжения +12В создает импульсное высокочастотное напряжение 700В.

 

DC/DC преобразователь

Преобразователем постоянного напряжения в постоянное напряжение осуществляется формирование питающих напряжений для всех компонентов системы. На вход монитора подается от внешнего сетевого адаптера напряжение +12В, в то время как для питания микросхем требуются напряжения +5В и +3.3В. Преобразование +12 Вольт в +5 Вольт и в +3.3Вольта осуществляется импульсным методом DC/DC преобразователем.

Для USB-хаба имеется отдельный преобразователь.

Напряжение +3.3В получается из напряжения +5В с помощью обычного линейного стабилизатора напряжения.

Сайт создан студией Lyalyuk Team Google+