Без рубрики

LCD – панели. Их построение, принципы работы, основные характеристики и методы оценки характеристик

Основным элементом LCD – мониторов, безусловно, является жидкокристаллическая панель (ЖК-панель). ЖК-панель можно отнести к основным элементам мониторов по следующим соображениям: она является самым габаритным и самым дорогим элементом монитора, а также именно характеристики панели определяют качество изображения и характеристики самого монитора. Устройство панели и принципы, заложенные в ее производство, определяют схемотехнику всей остальной части монитора, определяют его интерфейс и его элементную базу. ЖК-панель, в свою очередь, далеко не простое устройство, ведь в ее составе кроме самой матрицы жидких кристаллов, имеются еще и схемы строчных и столбцовых драйверов, имеются схемы, осуществляющие выборку строк и столбцов. Также внутри панели имеются интерфейсные схемы и микроконтроллер, обслуживающий интерфейсы. Кроме того, многие производители в состав панели вводят и блок задней подсветки. Все это подводит нас к выводу, что грамотный ремонт и диагностика мониторов LCD просто невозможны без знаний о ЖК-панелях.

Самым лучшим способом изучения принципов работы и устройства ЖК-панелей является рассмотрение этих вопросов на примере конкретного изделия. В качества такого примера предлагается выбрать панель модели LTM213U4-L01 производства фирмы Samsung Electronics, являющейся одним из лидеров в производстве данной продукции.

Характеристики ЖК-панели

Вначале, конечно же, стоит определиться, что же за панель предлагается к рассмотрению, ведь ее разрешающая способность, размер, цветовые характеристики и т.п. могут значительно изменять конструктив самой панели. Основные характеристики и особенности ЖК-панели представлены в виде таблицы – табл.1.

Таблица 1.

Параметр, характеристика

Значение

Тип

Активная матрица TFT 

Размеры

432 х 324 мм (21.3 дюйма – диагональ), толщина – 26 мм

Вес

3.9 кг

Элемент изображения

Тонкопленочный транзистор на аморфном кремнии (a-Si)

Количество отображаемых цветов

16.7 миллионов (8 бит на каждый цвет)

Количество точек (разрешение)

1600х1200

Типовое время отклика

25 мс

Максимальное время отклика

35 мс

Угол обзора по вертикали или горизонтали

170°

Угол обзора во всех направлениях

Не менее 85 °

Шаг точек

0.27 мм

Режим дисплея

Нормально – черный

Тип задней подсветки

Встроенные лампы типа CCFT – две тройных лампы (всего шесть)

Тип интерфейса

Open LDI (LVDS)

Тип используемого приемника LVDS

DS90CF388

Расположение точек

Вертикальные полосы R, G, B 

Используемые технологии

PVA

Диапазон рабочих температур

От 0 до +50 °С

Диапазон температур при хранении

От -20 до +65 °С

Допустимые вибрации

До 1 G

Допустимые удары

До 50 G

Конструктив ЖК-панели

Конструктив ЖК-панели

Структурная схема панели LCD-панели показана на рис.1, и по этой схеме можно сделать следующие замечания.

                1) В составе панели имеется модуль задней подсветки. Такое решение характерно далеко не для всех моделей LCD-модулей. Однако стоит обратить внимание, что схема инвертора не является составной частью изделия, и инвертор должен разрабатываться производителем монитора. Инвертор – это источник питания, обеспечивающий преобразование напряжения постоянного тока от источника питания в импульсное высоковольтное напряжение, подводимое к лампам. Модуль задней подсветки образован шестью люминесцентными лампами с холодным катодом (CCFL). Эти шесть ламп собраны в две группы (по три в каждой). Как и в подавляющем большинстве других ЖК-панелей лампы размещаются по краям матрицы жидких кристаллов. Для каждой из шести ламп имеется отдельный соединительный разъем.

                2) ЖК-панель оснащена интерфейсом LVDS, что позволяет обеспечить высокую скорость передачи данных и понизить вероятность помех. Применение этого интерфейса также обеспечивает универсальность панели, т.е. ее можно использовать с любой управляющей платой, которая оборудована интерфейсом LVDS. При использовании интерфейса LVDS информация на ЖК-панель передается в последовательном виде, и поэтому в составе панели имеется преобразователь последовательных данных в параллельный вид. Такой преобразователь представляет собой интегральную микросхему, называемую Receiver (приемник). Данные, преобразованные в параллельный вид, передаются далее на микросхему дисплейного контроллера TCON.

                3) Микросхема TCON обеспечивает управление синхронизацией, приемом и распределением данных по столбцовым и строковым драйверам. На выходе микросхемы TCON формируется столько управляющих сигналов, сколько всего имеется управляющих транзисторов в панели, а рассчитать их количество достаточно просто. Если данная панель поддерживает «разрешение» 1600х1200, то на экране имеется 1200 строк и 4800 столбцов (1600х3), т.е. каждая цветная точка образована тремя стоящими рядом точками. В данной панели используется именно полосковая топология точек (Stripe), и пример расположения точек демонстрируется на рис.2.

                4) Столбцовые драйверы реализованы в виде интегральной микросхемы. Сигналы на выбор того, или иного драйверного транзистора поступают от микросхемы TCON в виде сигналов TTL – эта взаимосвязь на рис.1  показана линией Control. Кроме того, для обеспечения градаций шкалы серого цвета используется метод ШИМ (Pulse Width Modulation – PWM) . При этом методе используется различная ширина импульсов выборки строки в процессе адресации. При этом поддержка метода ШИМ обеспечивается аппаратно в структуре именно драйвера столбцов. По шине управления (на рис. 1 она обозначена VideoData) для каждого пиксела передается 8-битовый код, которому соответствует 256 градаций шкалы серого. Коды градации записываются в регистр столбцового драйвера, а затем преобразуются в длительность  импульсов пропорционально коду. 

                5) В составе ЖК-панели имеется схема управления питающими напряжениями. Эта схема представляет собой преобразователь и регулятор, формирующий питающие напряжения для всех элементов панели, причем номиналы этих напряжений различны.

 

Оптические характеристики ЖК-панели и методы их измерения

Основные оптические характеристики, которые специфицируются для панелей на основе жидких кристаллов, и их значения для панели  Samsung LTM213U4-L01  представлены в табл.2.

Конструктив ЖК-панели

Структурная схема панели LCD-панели показана на рис.1, и по этой схеме можно сделать следующие замечания.

Рис. 1

1) В составе панели имеется модуль задней подсветки. Такое решение характерно далеко не для всех моделей LCD-модулей. Однако стоит обратить внимание, что схема инвертора не является составной частью изделия, и инвертор должен разрабатываться производителем монитора. Инвертор – это источник питания, обеспечивающий преобразование напряжения постоянного тока от источника питания в импульсное высоковольтное напряжение, подводимое к лампам. Модуль задней подсветки образован шестью люминесцентными лампами с холодным катодом (CCFL). Эти шесть ламп собраны в две группы (по три в каждой). Как и в подавляющем большинстве других ЖК-панелей лампы размещаются по краям матрицы жидких кристаллов. Для каждой из шести ламп имеется отдельный соединительный разъем.

2) ЖК-панель оснащена интерфейсом LVDS, что позволяет обеспечить высокую скорость передачи данных и понизить вероятность помех. Применение этого интерфейса также обеспечивает универсальность панели, т.е. ее можно использовать с любой управляющей платой, которая оборудована интерфейсом LVDS. При использовании интерфейса LVDS информация на ЖК-панель передается в последовательном виде, и поэтому в составе панели имеется преобразователь последовательных данных в параллельный вид. Такой преобразователь представляет собой интегральную микросхему, называемую Receiver (приемник). Данные, преобразованные в параллельный вид, передаются далее на микросхему дисплейного контроллера TCON.

3) Микросхема TCON обеспечивает управление синхронизацией, приемом и распределением данных по столбцовым и строковым драйверам. На выходе микросхемы TCON формируется столько управляющих сигналов, сколько всего имеется управляющих транзисторов в панели, а рассчитать их количество достаточно просто. Если данная панель поддерживает «разрешение» 1600х1200, то на экране имеется 1200 строк и 4800 столбцов (1600х3), т.е. каждая цветная точка образована тремя стоящими рядом точками. В данной панели используется именно полосковая топология точек (Stripe), и пример расположения точек демонстрируется на рис.2.

Рис. 2

4) Столбцовые драйверы реализованы в виде интегральной микросхемы. Сигналы на выбор того, или иного драйверного транзистора поступают от микросхемы TCON в виде сигналов TTL – эта взаимосвязь на рис.1 показана линией Control. Кроме того, для обеспечения градаций шкалы серого цвета используется метод ШИМ (Pulse Width Modulation – PWM) . При этом методе используется различная ширина импульсов выборки строки в процессе адресации. При этом поддержка метода ШИМ обеспечивается аппаратно в структуре именно драйвера столбцов. По шине управления (на рис. 1 она обозначена VideoData) для каждого пиксела передается 8-битовый код, которому соответствует 256 градаций шкалы серого. Коды градации записываются в регистр столбцового драйвера, а затем преобразуются в длительность импульсов пропорционально коду.

5) В составе ЖК-панели имеется схема управления питающими напряжениями. Эта схема представляет собой преобразователь и регулятор, формирующий питающие напряжения для всех элементов панели, причем номиналы этих напряжений различны.

Оптические характеристики ЖК-панели и методы их измерения

Основные оптические характеристики, которые специфицируются для панелей на основе жидких кристаллов, и их значения для панели Samsung LTM213U4-L01 представлены в табл.2.

Таблица 2.

 

Характеристика

Обознач.

Условия измерения

Значение

Ед. измер

мин

тип

макс

Масштаб контрастности

C/R

 

 

Измерительная аппаратура размещается строго перпендикулярно экрану – угол обзора равен 0° в любом направлении:

 

θ = 0°

φ = 0°

400

500

 

Время отклика

Нарастающий фронт

Tr

15

20

мсек

Спадающий фронт

Tf

10

15

мсек

Яркость белого (центр экрана)

Y(L)

220

250

Кд/м2

 

 

 

 

Цветовые

координаты

 

Красного

цвета

(X)

Rx

 

 

 

Отклонение

– 0.03

0.632

 

 

 

Отклонение

+ 0.03 

 

(Y)

Ry

0.353

Зеленого цвета

(X)

Gx

0.293

(Y)

Gy

0.590

Синего цвета

(X)

Bx

0.140

(Y)

By

0.090

Белого цвета

(X)

Wx

0.310

(Y)

Wy

0.340

 

Угол

обзора

По горизонтали

Влево

L

 

Измерение угла осуществляется при уровне контрастности больше 10 (C/R > 10)

80

85

град.

Вправо

θR

80

85

град.

По

вертикали

Вверх

φH

80

85

град.

Вниз

φL

80

85

град.

Неравномерность яркости

Buni

 

30

%

 

 

 

 

Достаточно интересными являются методики измерения тех характеристик, которые упоминаются в табл.2, и рассмотрение более подробно этих методик дает очень хорошее представление о том, на что обращать внимание при выборе и определении качества LCD-монитора. Эта информация также необходима и сервисным службам, т.к. после завершения ремонтных работ необходимо осуществлять контроль выходных параметров отремонтированного изделия, и в случае несоответствия их заданным значениям, либо произвести регулировку, либо осуществить замену изделия из-за невозможности обеспечить требуемого качества изображения. Начнем рассмотрение методик по порядку упоминания характеристик монитора в таблице.

Но прежде чем говорить о методиках измерения параметров ЖК-панели, стоит сказать о том, что эти работы необходимо производить только после того, как температура панели стабилизируется. Поэтому следует вначале оставить ЖК-монитор в помещении, где будут производиться измерения примерно на 30 минут. Это помещение должно быть темным, т.е. в нем не должно быть окон, и температура в комнате измерений должна быть стабильной. Температура окружающего воздуха в комнате измерений должна иметь значение +25°С (±2°С). Требование отсутствия окон в помещении связано с тем, что внешний свет может исказить результаты измерения яркости, контрастности и угла обзора.

После истечения 30 минут монитор включается, и начинают светить лампы задней подсветки, что приводит к разогреву самой ЖК-панели. Чтобы избежать возможных искажений и неточностей измерений, необходимо подождать, пока панель не прогреется уже под действием лампы задней подсветки. После включения монитора необходимо подождать еще около 30 минут. И только после этого можно быть уверенным в точности измерений и в отсутствии температурных погрешностей.

Как уже упоминалось, измерительное оборудование должно устанавливаться строго против центра экрана, без каких либо наклонов, так как это показано на рис.3.

Рис. 3

В качестве измерителей характеристик монитора фирмой Samsung предлагается использовать анализаторы (фотодетекторы) следующих типов:

1. TOPCON BM-5A

2. BM-7

3. PHOTO RESEARCH PR650

Прибор BM-5A размещают на расстоянии 40 см от экрана и этим прибором проводятся измерения яркости, диапазона контрастности, угла обзора и неравномерности яркости экрана. Прибором BM-7 проводится измерение времени отклика точек, и размещается прибор на расстоянии 50 см от экрана. Прибором PR650, устанавливаемым на расстоянии 50см от поверхности экрана, проводится измерение цветовых характеристик (координат) панели.

Для получения некоторых параметров ЖК-панели измерения нужно производить не только в центре, но и на краях экрана. Эти точки (и их координаты, т.е. строки и столбцы) отмечены на рис.4.

Рис. 4

Измерение контрастности

Масштаб (диапазон) контрастности, обозначаемый в англоязычной технической документации как C/R, является соотношением двух значений яркости: для белого и для черного экрана – формула (1).

Анализатором получают два значения Gmax и Gmin в центральной точке экрана (точка №5 на рис.4). Значение Gmax измеряется, когда все точки ЖК-панели светятся белым цветом. Значение Gmin измеряется анализатором при условии, что все точки экрана – черные.

Большое значение масштаба контрастности является несомненным достоинством изделия, т.к. такая панель обеспечивает широкий диапазон регулировки контрастности изображения.

Измерение времени отклика

Время отклика является суммой двух параметров: времени нарастания (Tr) и временем спада (Tf). Время нарастания измеряется при переключении ЖК-панели с черного цвета на белый. Время спада измеряется при переключении панели с белого цвета на черный. Принцип измерения времени Tr и времени Tf демонстрируется на рис.5.

Рис. 5

Измерение яркости белого

Эта характеристика ЖК-панели измеряется прибором BM-5A в центре экрана (точка №5 на рис.4). Большое значение этой характеристики соответствует широкому диапазону яркости и также является признаком хорошей панели.

Измерение цветовых характеристик

Цветовые координаты каждого цвета измеряются прибором PR650, также устанавливаемым строго напротив центра экрана (точка №5 на рис.4). Измерение цветовых характеристик проводится в соответствии со спецификацией CIE1931. Измерение цветовых координат производится для каждого цвета в отдельности, для чего на экране последовательно включается соответствующий цвет.

Измерение неравномерности яркости экрана

Для получения данной характеристики прибором BM-5A измерение яркости проводится девять раз – в каждой из точек, указанных на рис.4 при условии, что все точки экрана белые. Далее из девяти полученных результатов выбирается два – максимально значение (Bmax) и минимальное (Bmin), и по этим двум результатам вычисляется неравномерность в соответствии с формулой (2).

Кроме визуальных параметров LCD-панель описывается еще и электрическими характеристиками, приведенными в табл. 3.

Таблица 3.

Параметр

Обознач.

Значение

Ед.

измер

мин

тип

макс

Напряжение питания

Vdd 

4.5

5.0

5.5

В

Тип интерфейса

LVDS 

Open LDI 

Потребляемый ток

При черном шаблоне

 

Idd

860

1020

мА

При мозаичном шаблоне

1060

1200

мА

При шаблоне двух вертикальных линий

1260

1520

мА

Частота кадровой синхронизации

Fv

58

60

60

Гц

Частота строчной синхронизации

FH 

70

75

75

кГц

Полоса пропускания (основная частота)

FDCLK 

62

81

82

МГц

Пиковое значение тока

IRUSH 

4.0

А

Некоторые данные, приведенные в таблице, нуждаются в пояснении.

1. Полоса пропускания (основная частота) – это частота синхронизации точек, определяемая на входе передатчика шины LVDS (об этом подробнее читайте в №2 нашего журнала).

2. Пиковое значение тока определяется в момент подачи питающего напряжения на ЖК-панель. Для получения пикового тока в момент подачи напряжения питания должны быть выполнены следующие условия:

– все управляющие и все сигнальные линии ЖК-панели должны быть заземлены;

– время нарастания питающего напряжения должно быть около 470 мкс (если быть точным, то за 470 мкс уровень напряжения в линии питания ЖК-панели должен измениться от величины 10% до 90% от номинального значения).

3. Величина потребляемого ЖК-панелью тока зависит от выводимого изображения. Минимальный ток панель потребляет при выводе сплошного черного изображения, а максимальный – при сплошной белой картинке. Но измерять величину Idd принято при загрузке на экран определенного шаблона. Как видно из таблицы, потребляемый ток измеряется три раза – на разных шаблонах, что дает более объективную картину.

Такими шаблонами являются:

1. Сплошной черный экран – рис.6.

Рис. 6

2. Мозаичный экран, или шахматное поле – рис.7.

Рис. 7

3. Вертикальные чередующиеся черные и белые линии, причем каждая линия (как черна, так и белая) состоит из двух вертикальных логических столбцов – рис.8.

 

Рис. 8

 

 

Модуль задней подсветки

В панели Samsung LTM213U4-L01 модуль задней подсветки состоит из шести ламп, разделенных на две группы – в каждой группе по три лампы. Электрические характеристики пары ламп модуля задней подсветки представлены в табл.4.

Таблица 4.

Параметр

Обознач.

Значение

Ед.

измер

мин

тип

макс

Напряжение питания

Vdd 

4.5

5.0

5.5

В

Тип интерфейса

LVDS 

Open LDI 

Потребляемый ток

При черном шаблоне

 

Idd

860

1020

мА

При мозаичном шаблоне

1060

1200

мА

При шаблоне двух вертикальных линий

1260

1520

мА

Частота кадровой синхронизации

Fv

58

60

60

Гц

Частота строчной синхронизации

FH 

70

75

75

кГц

Полоса пропускания (основная частота)

FDCLK 

62

81

82

МГц

Пиковое значение тока

IRUSH 

4.0

А

 

В современных ЖК-панелях традиционно используются люминесцентные лампы с холодным катодом (CCFL) – исключением не является и рассматриваемая в этом обзоре. Но для всех люминесцентных ламп характерна одна особенность – это значительная зависимость и яркости свечения и режима включения лампы от окружающей температуры.

Напряжение питания на лампы подается с инвертора, который может управляться методом широтно-импульсной модуляции (ШИМ). Яркость ламп и их время «жизни» определяется исключительно схемой инвертора, поэтому задачей производителя монитора будет разработка такой схемы инвертора, которая не должна выдавать слишком высокое напряжение на лампы. В качестве требований к инвертору можно назвать еще и стабильность импульсного высокочастотного напряжения на выходе.

Высокая частота в несколько десятков кГц, на которой работают люминесцентные лампы, может стать причиной явления интерференции, вызванного взаимодействием частоты ламп и частоты срочной развертки. Явление интерференции приводит к появлению на экране монитора такого явления, как «плывущие» строки и муар. Для подавления интерференции частота, на которой работает инвертор, должна отличаться от частоты строчной развертки и от частоты основных гармоник строчной развертки настолько, насколько это возможно обеспечить.

Хорошо спроектированный инвертор должен обеспечивать собственное отключение не позднее чем через 1 сек. В том случае, если разъем ламп задней подсветки не подключен.

Время «жизни» ламп (Hr) является условной величиной, вычисляемой как время, в течение которого выходная яркость ламп уменьшится вдвое по сравнению с начальным периодом работы. При вычислении времени «жизни» необходимо учитывать окружающую температуру, которая должна быть 25°С, а также величину действующего тока лампы, который для данной панели должен быть на уровне 6.5 мArms.

Так как лампы размещают по краям экрана, то для обеспечения симметрии с каждой стороны экрана находится по одной лампе из пары (рис.9).

Рис. 9

На рис.10 демонстрируется распределение выводов модуля задней подсветки по разъемам и их соответствие разъемам инвертора.

Рис. 10

Интерфейсы панели

ЖК-панель соединяется с внешними схемами тремя интерфейсами:

– интерфейс напряжения питания (12-контактный разъем);

– интерфейс напряжения питания модуля задней подсветки (6 разъемов по 3-4 контакта);

– интерфейс LVDS для передачи управляющих сигналов, сигналов синхронизации и цветовой информации.

Интерфейс напряжения питания имеет весьма простое распределение сигналов по контактам – первые шесть выводов – напряжение +5В, оставшиеся шесть выводов – «земля» (табл.5).

Таблица 5.

Назначение

1

+5 В

2

+5 В

3

+5 В

4

+5 В

5

+5 В

6

+5 В

7

GND

8

GND 

9,10

GND 

11

GND 

12

GND 

 

 

 

Интерфейс модуля задней подсветки уже был достаточно подробно расписан в предыдущем разделе статьи. Осталось решить вопрос с информационным интерфейсом.

В ЖК-панели LTM213U4-L01используется интерфейс LVDS, ставший на сегодняшний момент самым широко используемым в LCD-модулях. Так как данные по этому интерфейсу передаются по паре дифференциальных линий в последовательном виде, в составе ЖК-модуля имеется приемник шины LVDS, который обеспечивает преобразование последовательного кода получаемых данных в параллельный вид, удобный для контроллера TCON. В качестве приемника шины LVDS в данном устройстве используется микросхема DS90C388. Но приемник и передатчик сигналов LVDS обычно представляют собой единый набор интегральных микросхем. В паре с приемником в качестве передатчика LVDS применяется микросхема DS90C387, размещаемая на плате управления ЖК-панелью. Интерфейс LVDS выполнен в виде 31-контактного разъема, распределение сигналов на котором описывается таблицей 6.

Таблица 6.

Обознач.

Назначение

1

GND 

Общий

2

GND 

Общий

3

A0M 

Вход данных (канал 0) дифференциальной пары (инверсный вывод)

4

A0P

Вход данных (канал 0) дифференциальной пары (прямой вывод)

5

A1M

Вход данных (канал 1) дифференциальной пары (инверсный вывод)

6

A1P

Вход данных (канал 1) дифференциальной пары (прямой вывод)

7

A2M

Вход данных (канал 2) дифференциальной пары (инверсный вывод)

8

A2P

Вход данных (канал 2) дифференциальной пары (прямой вывод)

9

GND

Общий

10

GND

Общий

 

11

 

CLKM

Вход синхросигналов для преобразования данных из последовательного вида в параллельный. Инверсный вывод дифференциального усилителя.

 

12

 

CLKP 

Вход синхросигналов для преобразования данных из последовательного вида в параллельный. Прямой вывод дифференциального усилителя.

13

A3M 

Выход данных (канал 3) дифференциальной пары (инверсный вывод)

14

A3P

Выход данных (канал 3) дифференциальной пары (прямой вывод)

15

GND

Общий

16

GND

Общий

17

A4M

Вход данных (канал 4) дифференциальной пары (инверсный вывод)

18

A4P

Вход данных (канал 4) дифференциальной пары (прямой вывод)

19

A5M

Вход данных (канал 5) дифференциальной пары (инверсный вывод)

20

A5P

Вход данных (канал 5) дифференциальной пары (прямой вывод)

21

A6M

Вход данных (канал 6) дифференциальной пары (инверсный вывод)

22

A6P

Вход данных (канал 6) дифференциальной пары (прямой вывод)

23

GND

Общий

24

GND

Общий

25

A7M

Вход данных (канал 7) дифференциальной пары (инверсный вывод)

26

A7P

Вход данных (канал 7) дифференциальной пары (прямой вывод)

27

GND

 

 

Зарезервированы 

28

GND

29

GND

30

GND

31

GND

 

Более полное представление о конфигурации интерфейса дает рис.11.

Рис. 11

Цвет каждой точки кодируется 24-битами, т.е. по 8 разрядов на каждый из основных цветов (красный, зеленый, синий). Информация по каждому из трех цветов передается по двум дифференциальным линиям, что делается для увеличения производительности интерфейса. Таким образом, для передачи цвета используется шесть каналов дифференциальных линий. Еще один дифференциальный канал используется для передачи сигналов строчной и кадровой синхронизации.

На выходе приемника LVDS формируются 24 бита данных четных точек строки (BE…,GE..,RE…) и 24 бита нечетных точек (BO…, GO…, RO…). Временные диаграммы интерфейса представлены на рис.12.

Рис. 12

Техническое обслуживание и эксплуатация ЖК-панели

Рассмотрев все особенности внутреннего устройства ЖК-панели Samsung LTM213U4-L01, переходим к одному из самых практических вопросов: как правильно работать с этим модулем, что допускается с ним делать, а что категорически запрещается, каким образом обеспечить грамотный уход за панелью во время эксплуатации и какие меры предосторожности соблюдать при проведении ремонтных работ. Все правила и рекомендации, приведенные ниже, относятся к ЖК-панели, но так как она является основным элементом мониторов, то автоматически все сказанное можно перенести и на LCD-мониторы в целом.

Правила хранения ЖК-панели

1. Нельзя надолго помещать ЖК-модуль в условия повышенной температуры и повышенной влажности. Наиболее оптимальными условиями для хранения является температура от 0 до +35°С, при относительной влажности менее 70%.

2. Нельзя хранить панели TFT-LCD при воздействии на них прямого солнечного света.

3. ЖК-панели должны храниться в темном месте, защищенном от попадания солнечного света и света люминесцентных ламп.

Правила эксплуатации и обслуживания ЖК-панели

1. ЖК-панель не должна подвергаться механическим деформациям и воздействию сил на скручивание.

2. Избегать воздействия сильных ударов и воздействия перегрузок. Это может приводить к повреждению не только самой матрицы LCD-TFT, но и ламп модуля задней подсветки.

3. Поляризующая поверхность панели очень хрупкая и может быть очень легко повреждена. Нельзя нажимать на поверхность экрана и царапать ее карандашами, ручками и т.п.

4. При попадании на поверхность экрана капель воды, масла или жира немедленно удалить (вытереть) их. Если капли оставить, то это может привести к образованию пятен и потери цветопередачи в данных местах.

5. В случае загрязнения поверхности экрана чистку производить специальными абсорбирующими салфетками или очень мягкой тканью.

6. В качества очищающих средств для чистки экрана желательно использовать воду, изопропиловый спирт или гексан.

7. Категорически запрещается применять растворители класса кетонов (например, ацетон), этиловый спирт, толуол, этиловую кислоту, метолхлорид и все средства, производимые на их основе. Применение перечисленных веществ может мгновенно повредить поляризующий слой экрана за счет возникающей химической реакции.

8. Если из панели вытекает материал жидких кристаллов, то запрещается его трогать руками, подносить к глазам, носу и рту. Если же этот состав все-таки попал на кожу, руки или на одежду, то необходимо промыть все тщательно водой с мылом.

9. Необходимо принять меры по защите панели от электростатических разрядов, которые могут стать причиной отказа электронных элементов (микросхем) внутри панели.

10. Запрещается разбирать ЖК-панель.

11. Защитная пленка с экрана должна удаляться непосредственно перед применением, т.к. она обеспечивает защиту и от электростатических разрядов.

12. При наружном применении ЖК-панели (на открытом воздухе) желательно использовать ультрафиолетовые фильтры.

13. При эксплуатации необходимо избегать образования конденсата.

14. Если на экране в течение очень долгого времени отображается одна и та же информация, то пользователь может столкнуться с явлением, при котором даже при выключенном мониторе на экране видны контуры этого изображения, т.е. экран как бы «прогорает» под соответствующее изображение.

Рекомендации при проведении ремонтных работ

1. При установке ЖК-панели необходимо следить за тем, чтобы все крепежные элементы были использованы, т.е. панель в корпус должна устанавливаться надежно и крепко.

2. Стоит предотвращать изгиб проводов ламп задней подсветки и запрещается сильно тянуть эти провода.

3. Запрещается регулировать переменные резисторы, находящиеся на ЖК-панели.

4. Запрещается трогать голыми руками (без перчаток) контакты соединительных разъемов панели – это может ухудшить их проводимость.

5. Монтажные и демонтажные работы лучше всего проводить на специальных лотках, покрытых мягкими антистатическими материалами и с использованием мягких перчаток.

6. Подключение и отключение панели от управляющих схем следует производить исключительно при выключенном питании.

7. Высокие частоты, на которых работают внутренние электронные схемы ЖК-панели, могут стать причиной явления электромагнитной интерференции. Для уменьшения этих явлений осуществляется «заземление» панели и ее экранировка. Поэтому при монтаже панели все эти меры должны строго соблюдаться.

8. Стоит также учесть тот момент, что длина соединительного кабеля между лампами задней подсветки и инвертором должна быть минимальной, и лампы к инвертору должны подключаться непосредственно. Удлинение соединительных проводов может стать причиной снижения яркости задней подсветки и увеличения пускового напряжения.